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A Major Predisposition Locus for Severe Obesity, at 4p15-p14
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Although the predisposition to morbid obesity is heritable, the identities of the disease-causing genes are largely
unknown. Therefore, we have conducted a genomewide search with 628 markers, using multigenerational Utah
pedigrees to identify genes involved in predisposition to obesity. In the genomewide search, we identified a highly
significant linkage to high body-mass index in female patients, at D452632, with a multipoint heterogeneity LOD
(HLOD) score of 6.1 and a nonparametric linkage (NPL) score of 5.3. To further delineate the linkage, we increased
both the marker density around D4S2632 and the size of our pedigree data set. As a result, the linkage evidence
increased to a multipoint HLOD score of 9.2 (at D4S3350) and an NPL score of 11.3. Evidence from almost half
of the families in this analysis support this linkage, and therefore the gene in this region might account for a
significant percentage of the genetic predisposition to severe obesity in females. However, further studies are necessary
to clarify the effect that this gene has in males and in the general population.

Introduction

The incidence of obesity ([MIM 601665]) has reached
epidemic levels (Flegal et al. 1998; Mokdad et al. 1999).
Patients with severe obesity (typically defined as BMI [in
kg/m?*] >35) suffer not only from the direct physical and
psychological consequences of being overweight but also
from increased risk for heart disease, diabetes, hyper-
tension, and some types of cancer (Drenick et al. 1980;
Manson et al. 19935; Troiano et al. 1996). Unfortunately,
current obesity therapies have proven largely ineffective
(Van der Ploeg 2000). Therefore, there is an urgent need
to define the etiology of this disease and to use that
information to initiate rational drug development.
Although it is clear that predisposition to severe obe-
sity is a heritable trait (Bouchard 1987; Hunt et al.
1989; Price et al. 1990), identifying the genes that confer
this risk has been difficult. Many potential obesity-caus-
ing genes have been identified in studies of humans and
animals. However, variation in these genes has not been
shown to account for a significant amount of severe
obesity in the human population (Pérusse et al. 2001).
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Unfortunately, linkage studies to identify obesity-caus-
ing genes also have been difficult. Numerous genome-
wide searches for obesity genes have been published,
but, with a few notable exceptions (e.g., see Comuzzie
et al. 1997; Hager et al. 1998; Feitosa et al. 2002), these
studies have, at best, produced equivocal results.

The difficulty with genetic studies of obesity presum-
ably stems from the genetic complexity underlying the
predisposition to the disease. This is particularly true
for linkage analysis, which is very sensitive to the degree
of genetic complexity (Risch 1990; Greenberg 1993;
Greenberg et al. 1998). Therefore, in this linkage study,
we employed several strategies designed to ameliorate
some of these complexities. First, we focused on patients
with very severe obesity. In general, linkage analysis is
best at detecting genes that have strong effects on the
phenotype of interest. Also, by focusing on a severe
phenotype (i.e., BMI =40), we hoped to reduce the un-
derlying genetic heterogeneity. Second, we applied strict
selection criteria to the pedigrees included in this study,
in a manner that was intended to maximize our ability
to detect genetic linkage—that is, we selected pedigrees
to enrich for genes with large effects on BMI, to en-
rich for genes with high penetrances, and to reduce the
frequency of intrafamilial genetic heterogeneity. Fi-
nally—and, again, to reduce genetic heterogeneity—we
employed sex-specific models and data sets. Various
groups have detected sex-influenced effects on obesity-
related phenotypes and on obesity-prone genotypes (Bo-
recki et al. 1993; Comuzzie et al. 1995; Gallagher et al.
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1996; Elbers et al. 1999; Lee et al. 1999; Garenc et al.
2002; Martin et al. 2002), and, importantly for the
present study, these include effects on BMI. Here we
present the results of a genomewide search using the
strategies described above, in conjunction with multi-
generational Utah pedigrees to identify genes involved
in predisposition to obesity.

Subjects and Methods

Pedigree Ascertainment

Families were ascertained from two sources. The ma-
jority of families were selected from the Utah popula-
tion-based Health Family Tree Program (Hunt et al.
1986; Williams et al. 1988). Families who indicated on
this high school-based family-history questionnaire that
they had two or more first-degree relatives of the stu-
dents’ parents who were =100 lbs overweight were con-
tacted, to assess their willingness to participate in this
study and to further validate the reported weights. All
family members who reported that they had a BMI =32
were asked to participate in a clinical examination.
Spouses were also invited to the clinic. Initially, normal-
weight subjects were examined, but, as the study pro-
gressed, fewer normal-weight subjects were recruited.
Pedigrees were expanded by following branches with
reported severe obesity. The second source of pedigrees
was a consecutive series of over 8,000 patients with gas-
tric bypass, in a local registry begun in 1980 by a group
of surgeons (Smith et al. 1995). As part of an annual
follow-up of the health status of these subjects, we as-
certained their family history of obesity and their will-
ingness to participate in this research study. All subjects
from both methods of ascertainment signed a consent
form, and this study was approved by the University of
Utah Institutional Review Board.

Pedigree Selection

It is difficult for linkage studies to detect (a) genes that
have weak to moderate effects on the phenotype of in-
terest, (b) genes with a low penetrance, and (c) the effect
that a single gene has in the presence of multiple disease-
causing genes within a family (i.e., intrafamilial genetic
heterogeneity). Therefore, for this linkage study, we se-
lected a set of families in a manner that was meant to
reduce genetic complexity—and, thus, to increase our
ability to detect linkage. First, to enrich for genes with
both strong effects on BMI (i.e., high expressivity) and
high penetrance, we selected pedigrees that contained at
least three members with an extreme (i.e., =40) BMI.
The three family members could have been either (a)
first-degree relatives (i.e., siblings, or parents and chil-
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dren) or (b) two first-degree relatives and at least one
second- or third-degree relative (e.g., a grandparent or
first cousin). Such a group of closely related individuals
with a BMI =40 were referred to as an “affected cluster”
(fig. 1). Second, to reduce the potential for intrafamilial
genetic heterogeneity, we limited the size of our selected
pedigrees. For any common disease, the probability that
intrafamilial genetic heterogeneity will be observed in-
creases as the size of the family increases. Therefore, we
chose pedigree founders in order to define subpedigrees
(subsequently referred to as “clustered pedigrees”), such
that the clustered pedigree contained the affected cluster
and any other family member with a BMI =40, who
was related to a member of the affected cluster by no
more than three generations (e.g., first cousins). The final
clustered pedigrees were formed by defining the appro-
priate founders, followed by a unilineal descent to in-
clude all of their ascertained posterity (fig. 2). In some
cases, the originally ascertained pedigree contained mul-
tiple affected clusters. If the shortest genetic distance
between affected clusters exceeded three generations,
each of the clusters was considered as a separate pedi-
gree. We applied these selection criteria to a total data
set of >435 pedigrees of European descent that have
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Figure 1 Pedigrees illustrating requirements to contain an af-

fected cluster. Blackened symbols denote subjects with BMI =40. A,
Pedigree with an affected cluster. B, Pedigree similar to that in panel
A, but without a cluster. In both pedigrees, individuals 1 and 2 are
first-degree relatives, but, in the pedigree in panel B, the genetic dis-
tance from individual 3 to either individual 1 or individual 2 is more
than three generations.
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Figure 2 Illustration of effect that phenotype has on pedigree
structure used in linkage analysis. Founder pairs for the BMI phenotype
and the BMIf phenotype are indicated by the oval. Blackened symbols
denote subjects with BMI =40. The final pedigree structures were
formed by defining the appropriate founders, followed by a unilineal
descent to include all of their ascertained posterity. Note that individual
4 would be included within the BMIf pedigree but that his phenotype
would be unknown. Also, the entire pedigree would be excluded from
analyses of the BMIm phenotype.

obesity, to create a data set of clustered pedigrees. On
average, the clustered pedigrees contained 27 subjects,
10 of whom had a BMI =35. Descriptive statistics of
the clustered pedigrees are given in table 1. These selec-
tion rules were chosen without regard to genotype in-
formation and to no extent did they bias the results of
the linkage analysis.

Phenotypes

Height was measured, by a stadiometer, with the in-
dividual in bare feet and with the head in the Frankfort
Plane and with examiner prompts to maintain a straight
back and posture. Weight was measured by an electronic
scale with a maximum capacity of 800 Ibs (Scaletronic;
Sharp). For subjects who had undergone gastric-bypass
surgery, the greatest measured or reported BMI was used
instead of current BMI. Subjects <15 years of age, as
well as deceased pedigree members, were defined as hav-
ing an unknown phenotype. When sex-specific pheno-
types were analyzed, the excluded sex was defined as
having an unknown phenotype.

Genetic Markers and Genotyping

DNA was extracted from blood buffy coats by PURE-
GENE DNA isolation kits (Gentra Systems). For the
genomewide search, genotyping was performed by use
of 628 fluorescent dye-labeled microsatellite markers
(di-, tri-, and tetranucleotide repeats) covering the entire
human genome. The mean heterozygosity index for these
genomic-search markers was 75%. All dinucleotide-re-
peat markers contained GTTT extensions at the 5’ ends
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of the non—dye-coupled PCR primers, to reduce the var-
iability of addition of nontemplated nucleotides at the
3’ ends of the labeled products (Brownstein et al. 1996).
PCR products were analyzed on ABI 377 fluorescent
sequencers. The average spacing between genomic-
search markers was 5.8 cM. The genetic map used for
all analyses was generated internally by the CRI-MAP
program (Lander and Green 1987), on 3,916 meioses.
After identification of significant linkage, 73 additional
markers (di-, tri-, and tetranucleotide repeats) were de-
veloped within a 60-cM interval centered on the peak
LOD score. This decreased the average marker spacing
to 0.75 ¢cM. The relative order of the markers within
this interval was determined by use of the UCSC Human
Genome Project Working Draft (also see International
Human Genome Sequencing Consortium 2001), and the
genetic distances between markers were calculated by
the CRI-MAP program. Inheritance of alleles was ver-
ified by the PedCheck program (O’Connell and Weeks
1998). Samples with incompatible calls were generally
regenotyped. The marker data for that family were set
to missing if the incompatibility could not be resolved.
The average completeness of genotyping was 95% after
incompatibilities were set to zero.

Statistical Analysis

Prior to linkage analysis, BMI was adjusted, by linear
regression, for sex and for age within each sex. In this
study, we employed robust multipoint linkage statistics
as proposed by Goring and Terwilliger (2000). Linkage
analysis was performed by MCLINK, a program devel-
oped to perform multipoint analysis on very large ped-
igrees with any number of markers (Thomas et al. 2000).
Three models (dominant, codominant, and recessive)
were used in linkage analysis. A disease-gene frequency
of 0.003 was chosen for the dominant and codominant
models, and 0.0775 was chosen for the recessive model,
yielding a disease prevalence, due to a single locus, of
~0.6%. This disease frequency would be equivalent to
assuming the existence of 10 major genes with similar
effects on BMI, resulting in heritable severe obesity being
present in 6% of the general population. A logistic dis-
tribution was used for the BMI-dependent ratio of the
sporadic rate to the penetrance (Ott 1991). The ratio of

Table 1

Descriptive Statistics for Pedigrees

MEAN BMI + SD

AVERAGE
PEDIGREE TYPE (NO.) SizE (RANGE) Females Males
BMI clusters (64) 26 (4-104) 35.5+8.6 34.7+8.0
BMIf clusters (37) 27 (4-104) 36.7+9.2  34.5%+8.0
BMIm clusters (14) 34 (4-87) 343+9.2 36.4+84
Total data set (435) 17 (2-435) 32.7+85 31.7x7.9
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sporadic rate to penetrance for a genotype with two
obesity-related mutations for all models and with one
obesity-related mutation for the dominant model is de-
scribed by the formula

sporadic rate 1

- 1+ e(BMI—35)/1.1 b

penetrance

and the ratio of sporadic rate to penetrance for a ge-
notype with one obesity-related mutation for the co-
dominant model is described by the formula

sporadic rate 1

0.5 *
penetrance 1 4 ®BMI-35/L1

These two ratios change gradually from 1 to 0 as BMI
increases. Individuals with low BMI are largely unin-
formative, whereas individuals with high BMI are al-
most fully informative. In practical terms, only pheno-
types from severely obese individuals (BMI >35) are
informative.

Since the genetic model underlying predisposition to
obesity is unknown, we also performed analyses using
a model-independent method. The haplotype solutions
generated by MCLINK (Thomas et al. 2000) can also
be used for nonparametric linkage (NPL) statistics
(Camp et al. 2001). The method is similar to the method
developed by Kruglyak et al. (1996) but is extended to
the analysis of quantitative traits. The main difference
between these two methods is in the scoring function.
Our scoring function is extended for analysis of quan-
titative traits and is defined for each pedigree, at each
marker position, by the formula S = Z,{Z,, [q; — ¢,]}
where the first sum is taken over all haplotypes b, the
second sum is taken over individuals i carrying haplo-
type b, g, is the quantitative-trait value for individual i,
and q, is a value close to the population mean or median
for the trait. In our NPL analysis, we used BMI as the
quantitative-trait value and set g, equal to 27. The value
of g, is the mean BMI of the Utah population, as derived
from 270 randomly ascertained adults.

The NPL scoring function is large when individuals
sharing the same haplotype have their quantitative-trait
values deviating in the same direction from g,, and it is
small when the quantitative-trait values do not correlate
with haplotype sharing. Thus, NPL statistics can detect
genes with causal mutations that segregate among in-
dividuals with either low or high BMI values. NPL anal-
ysis not only circumvents the problem of model mis-
specifications but also has the ability to recognize the
effects of multiple mutations, even if their penetrances,
phenotypic effects, and modes of inheritance are quite
different.
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To be able to compare NPL and LOD scores directly,
we calculated NPL and LOD scores in 20 independent
genomic scans of the same set of pedigrees but with
randomly generated haplotypes (data not shown). Sub-
sequently, an asymptotic formula was derived to adjust
NPL scores, such that equal LOD and NPL scores trans-
lated to the same P values.

Results

In this study, we considered three different BMI-based
phenotypes: a sex-nonspecific phenotype (BMI), a fe-
male-only phenotype (BMIf), and a male-only pheno-
type (BMIm). In the sex-specific phenotypes, the op-
posite sex is considered completely uninformative. The
pedigree-selection criteria employed in this study (see the
“Pedigree Selection” subsection, above) depended on the
affected status of pedigree members. As a consequence,
the set of selected clustered pedigrees changed as the
phenotype definition changed. This was achieved by al-
tering, in a phenotype-specific manner, the selection of
pedigree founders (fig. 2). Therefore, although there was
some overlap, in general we analyzed a different set of
clustered pedigrees for each of the three BMI pheno-
types. As a result, we included 64 pedigrees with 1,687
individuals in the analysis of BMI, 37 pedigrees with
994 individuals in the analysis of BMIf, and 14 pedigrees
with 479 individuals in the analysis of BMIm (for ad-
ditional descriptive statistics, see table 1).

We considered three inheritance models: dominant,
codominant, and recessive. In all of these models, BMI
was used to determine the likelihood that a subject car-
ried a disease allele. In general, results for individuals
with a high BMI were informative, and these individu-
als were considered likely to be disease-allele carriers,
whereas results for individuals with a low BMI were
uninformative.

Genomewide Search

The clustered pedigrees were genotyped with 628 ge-
netic markers covering the human genome, at an average
spacing of 5.8 ¢cM. Marker-segregation patterns were
determined by MCLINK (Thomas et al. 2000), and the
haplotype solutions were subsequently used to generate
model-based multipoint heterogeneity LOD (HLOD)
scores and NPL scores (Camp et al. 2001) scores (fig.
3). The NPL scores reported in the present study were
adjusted such that NPL scores and HLOD scores of
equal magnitude correspond to the same P value. Link-
age for the BMIf phenotype was detected at D452632
(4p15-p14) (fig. 3); the HLOD scores were 6.1 for the
codominant model, 4.3 for the recessive model, and 3.7
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Figure 3 Results of genomic search by four analyses: NPL (red),

codominant model (green), dominant model (blue), and recessive
model (yellow). The HLOD or NPL score is plotted on the Y-axis,
and marker positions (in cM) are plotted on the X-axis. Vertical dashed
lines delimit the chromosomes; chromosome numbers (odd numbers
only) are indicated at the top of the figure. A, HLOD or NPL scores
from BMI phenotype. B, HLOD or NPL scores from BMIm phenotype.
C, HLOD or NPL scores from BMIf phenotype.

for the dominant model; and the NPL score was 5.3.
The results of the genomewide search are summarized
in table 2 (linkage scores [HLOD or NPL] >2.0 are
shown).

According to the guidelines proposed by Lander and
Kruglyak (1995), a LOD score >4.9 represents highly
significant evidence for linkage (“highly significant” is
their most significant category). However, the present
study employed three phenotypes, three models, and an
NPL analysis for each of the three phenotypes. There-
fore, we adjusted our highly significant threshold for 12
multiple tests. To be conservative, we assumed that the
models and phenotypes were independent, requiring an
adjustment of 1.1 (log,,12) LOD-score units. Accord-

1463

ingly, we adjusted our genomewide highly significant
threshold to 6.0. The linkage evidence at 4p15-p14 re-
mained highly significant.

Linkage Analyses of the 4p15-p14 Interval

To further delineate the linkage on chromosome 4, we
developed 73 additional genetic markers in a 60-cM in-
terval centered on D452632 (the genetic markers within
10 cM of D4S2632 are shown in table 3). These markers
(as well as the chromosome 4 markers in our genome-
wide search) were typed in our clustered pedigrees. As
a result, the HLOD score for the codominant model
increased from 6.1 to 7.2. Also, we increased the size of
our pedigree set, in two ways. First, we expanded the
initial 37 female-clustered pedigrees. Second, we added
14 newly ascertained pedigrees, all of which contained
clusters of severely affected females. These families were
collected in the same way and had the same average
BMI as our genomewide search pedigrees. They had an
average size of 13 subjects, and, in total, the expanded
data set contained 1,182 subjects. The genotyping data
were analyzed by use of the BMIf phenotype (fig. 4).
After the analysis of the expanded data set, the codom-
inant model generated a peak HLOD score of 9.2 at
marker D4S3350. The heterogeneity fraction was 0.46.
All of the model-based HLOD scores were also highly
significant (table 3), and, importantly, the peak linkage
scores for all analyses occurred at approximately the
same genetic location. The highest linkage scores were
generated by the NPL analysis, with a peak score of 11.3

Table 2

Significant and Interesting Multipoint HLOD Scores from
the Genomewide Search

Position HLOD

Marker (cM) Score  Phenotype Model
D1S468 7.7 2.5 BMIf Codominant
D1S508 18.4 2.2 BMIf Codominant
D4S52639 31.8 2.2 BMI Codominant
D4S2289 32.2 2.6 BMIf Dominant
D4S2397 40.5 4.1 BMIf Codominant
D4S2632 49.9 6.1 BMIf Codominant
D4S1627 59.5 3.4 BMIf Codominant
D4S3019 68.1 2.1 BMIf Codominant
D4S53248 70.6 2.0 BMIf Codominant
D8S282 41.8 2.0 BMIm Dominant
D11S4464 114.9 2.8 BMIm Codominant
D11S934 118.9 2.6 BMIm Codominant
D11S912 123.9 2.7 BMIm Codominant
D20S478 50.8 2.0 BMIf Dominant
D20S438 51.2 2.0 BMIf Dominant
D20S465 52 2.0 BMIf Dominant
D20S481 59.1 2.2 BMIf Dominant
DXS8099 37.3 2.6 BMIf Dominant
DXS1059 115.2 2.0 BMI Dominant




Table 3

Markers and Linkage Scores for Regions Flanking D45S2632, When BMIf Phenotype Is

Used
RELATIVE HLOD SCORE
PosITiON

MARKER? (cM) NPL SCORE  Codominant Dominant  Recessive
D452397 15 6.1 57 5.5 4.6
D4S1609 15.3 6.6 5.8 5.7 4.7
D4§391 15.6 6.6 5.8 57 4.8
4-MYRO0306 15.7 6.5 6.6 5.4 5.7
4-MYRO0310 16.1 6.3 6.4 53 5.6
4-MYRO0305 16.9 59 6.2 5.3 5.3
4-MYRO0301 17.3 5.6 6.0 52 4.9
D45418 17.6 5.3 6.0 5.1 4.9
D452282 17.7 52 6.0 51 4.8
4-MYRO0307 18.0 5.5 6.2 5.3 4.9
4-MYRO0304 18.5 6.5 6.8 6.0 5.4
D4S1643 18.7 6.5 7.0 5.9 5.8
4-MYR0263 19.0 6.3 7.1 5.8 5.8
4-MYRO0264 19.1 6.3 7.1 5.8 5.8
D452968 19.7 9.1 8.5 6.9 7.1
D452408 19.8 9.1 8.5 6.8 6.9
4-MYRO0251 19.9 9.7 9.1 7.5 7.3
4-MYR0250 20.2 9.1 8.7 6.7 7.0
4-MYR0233 20.3 9.2 8.7 6.8 7.0
D4§2359 21.3 9.6 8.7 7.1 6.7
D4S53027 21.6 9.9 8.7 7.3 6.6
4-MYR0249 21.7 9.9 8.8 7.5 6.6
D4S53001 22.6 10.7 9.0 7.6 6.9
D45188 22.7 10.7 9.0 7.6 6.9
4-MYR0220 22.8 10.8 9.0 7.6 6.9
4-MYRO0246 22.9 10.8 9.0 7.6 6.9
AFMa070ta9 23.6 11.2 9.2 7.8 7.0
D4S3350¢ 23.7 11.3 9.2 7.8 7.0
4-MYRO0234 23.8 11.2 9.2 7.9 7.1
4-MYRO0235 23.9 11.2 9.1 7.8 7.0
D452415 24.0 11.1 9.1 7.8 7.0
4-MYR0248 241 11.1 9.1 7.8 7.0
4-MYR0247 24.5 11.1 9.2 7.8 7.0
D4§1587 25.0 9.2 7.8 6.6 6.2
4-MYR0262 25.1 9.0 7.8 6.2 6.2
D452632 252 9.1 7.8 6.2 6.3
D452400 25.3 9.1 7.8 6.1 6.2
D45483 25.4 9.0 7.8 6.1 6.1
4-MYRO0267 25.5 9.0 7.8 6.1 6.1
D4§2995 25.6 8.9 7.8 6.1 6.2
D4S52955 25.9 8.1 7.6 5.7 6.1
4-MYRO0266 26.1 8.6 7.9 6.1 6.1
4-MYRO0265 26.2 8.7 8.1 6.2 6.1
4-MYR0302 26.4 9.0 8.1 6.3 6.1
4-MYRO0300 26.8 7.3 6.8 5.2 5.6
4-MYRO0303 26.9 6.7 6.5 4.9 5.4
D4S3040 27.2 6.1 6.0 4.4 5.1
D451581 27.4 6.0 5.0 34 4.7
D4S617 27.7 5.9 4.8 3.3 4.8
D452382 28.9 4.3 4.0 2.5 3.7
D45405 29.5 4.2 3.8 2.4 3.5
D451627 33.1 3.4 3.2 1.3 3.4
D4S1536 34.9 3.8 3.5 1.7 3.6

* Markers denoted “4-MYR” were developed at Myriad Genetics. Primer sequences are

available on request.

b Starting 15 ¢cM from D4S403, the first marker developed to investigate this linkage.
¢ Located at 49.5 cM on the Marshfield sex-averaged linkage map.
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Figure 4

Results of adding additional markers and individuals to linkage analyses of the 4p15-p14 interval, in four analyses: NPL (red),

codominant model (green), dominant model (blue), and recessive model (yellow). The highest linkage score is at marker D4S3350, which is
located at 49.5 ¢M on the Marshfield sex-averaged linkage map. The phenotype is BMIf. Linkage scores are plotted on the Y-axis, and relative

marker positions are plotted on the X-axis.

at marker D453350. The families with LOD or NPL
scores =1 at D4S3350 are shown in table 4.

Discussion

In the present study we have conducted a genomewide
search for genes involved in obesity predisposition and
have reported on a region, at 4p15-p14, that generated
highly significant evidence for an obesity-predisposition
gene. No other significant linkages were detected; how-
ever, other interesting regions are shown in table 2. One
of the interesting regions (the second-highest-scoring re-
gion in the genome) was on chromosome 11. These
markers have been linked to high BMI values in Pima
Indians, and markers in the same genomic region have
been associated with weight in a mostly white popula-
tion (Hanson et al. 1998; Norman et al. 1998; Gu et al.
2002). We also detected a weak linkage to chromosome
20. Numerous groups have previously detected signifi-
cant linkage of obesity to chromosome 20 (Borecki et
al. 1994; Lembertas et al. 1997; Bottini and Gloria-Bot-
tini 1999; Lee et al. 1999); in addition, we have previ-
ously reported such linkage in Utah pedigrees (Hunt et
al. 2001). Presumably, this linkage signal was diminished
because many of the pedigrees from our previous study
(including some of the chromosome 20-linked pedi-
grees) did not meet the strict selection criteria of the
present study and, therefore, were excluded from this
analysis. To our knowledge, none of the other regions

listed in table 2 correspond to previously detected
linkages.

Given the magnitude of the linkage evidence pre-
sented here, it is notable that this region has not been
previously identified (Pérusse et al. 2001). In particular,
several studies have generated highly significant evi-
dence for predisposition to obesity, but none of the stud-
ies detected this linkage (Comuzzie et al. 1997; Hager
et al. 1998; Feitosa et al. 2002). However, there are
significant differences between this and previous studies.
For example, we employed several strategies that were
intended to reduce the underlying genetic complexity of
obesity. We collected a large set of multigenerational
obesity pedigrees and, from these, selected pedigrees
that were favorable for linkage analysis. We also applied
sex-specific phenotypes and phenotype-specific pedigree
sets and focused our analyses on a severe phenotype.
The combination of these strategies is likely to have an
impact on the results of linkage analysis. For example,
prior to the implementation of these analytic strategies,
the highest HLOD that we observed in the 4p15-p14
region was 3.0 (data not shown). It is worth noting that
a recent abstract (Arya et al. 2001) indicates that the
4p15-p14 region has been linked to high BMI in Mex-
ican Americans. Although the data are preliminary, the
results seem to confirm the present linkage.

Both parametric linkage analysis and NPL analysis
detected the linkage to 4p15-p14; however, the most
significant linkage statistic was generated by NPL anal-
ysis. One of the strengths of NPL is its ability to detect
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Table 4

Am. ]J. Hum. Genet. 70:1459-1468, 2002

Families with Multipoint Linkage Scores of =1.0 at D4S3350, When BMIf Phenotype Is Used

NO. OF INDIVIDUALS

Females HLOD SCORE
FAMILY Total BMI =35" BMI =40 NPL ScCORE Codominant Dominant Recessive
43601 81 18 11 2.6 4.9 3.4 3.1
708201 13 N 3 2.3 1.7 1.3 1.6
604401 58 11 7 2.0 1.7 2.0 1.1
7444 13 7 3 1.9 1.2 1.4 5
736201 13 4 4 1.3 1.1 2 1.0
738001 63 7 4 1.1 .8 1.4 7
7135101 65 14 5 1.1 .8 1.0 .9
722801 34 12 6 1.0 5 7 2
7158201 15 5 4 7 1.3 2 1.2
1105501 19 8 3 3 .8 .0 1.2

* Includes females with BMI =40.

linkage even in the presence of genetic complexity. In
particular, NPL analyses can simultaneously detect dif-
ferent patterns of haplotype sharing in affected pedigree
members. Here, the data suggest that the actual disease
inheritance contains components of dominant, codom-
inant, and recessive models. If any of these models had
been grossly misspecified, they would not have gener-
ated the observed HLOD scores (see fig. 4). Perhaps the
actual disease inheritance involves multiple causal var-
iants, each with different penetrances, phenotypic ef-
fects, and modes of inheritance, and, obviously, it would
be difficult to reproduce that amount genetic complexity
in any parametric analysis.

The linkage evidence at 4p15-p14 was sensitive to
phenotype definition. The BMIf phenotype was the only
phenotype that generated highly significant evidence for
an obesity linkage at 4p15-p14 (fig. 3). Analysis of the
BMIm phenotype generated no evidence for linkage to
this region, and analysis of the BMI phenotype gener-
ated only suggestive evidence for linkage. In addition,
none of the linked pedigrees (table 4) generated higher
LOD scores when the BMI phenotype (data not shown)
was used. This suggests that affected males within the
linked pedigrees either did not share the presumptive
disease haplotype(s) or, at least, did not share to the
same extent as did affected females. For example, if we
consider the affected subjects (BMI =33) in the three
families that generated the highest linkage scores (table
4), 29 of 32 females share the disease haplotype(s), com-
pared to 13 of 23 males. One explanation for these data
is that the obesity-predisposition gene described in the
present study does not cause male obesity. Various lines
of evidence suggest that sex-specific obesity genes may
exist. As stated previously, sex-specific effects on obesity
have been described, and several of these studies have
specifically described these effects on BMI (Borecki et
al. 1993; Gallagher et al. 1996; Lee et al. 1999; Garenc

et al. 2002). However, even moderately complex rela-
tionships between genotypes and phenotypes can se-
verely suppress the resultant LOD scores. Therefore, it
is often difficult to infer biology from the results of
linkage analysis. For example, the gene detected in the
present study may have an effect on males, but that
effect could simply be weaker than its effect in females.
It would be difficult to create a single linkage analysis
that could simultaneously detect linkage in males and
in females if the genetic effect varied by sex. Obesity-
causing alleles of melanocortin 4 receptor (a gene im-
plicated in 2%-5% of early-onset morbid obesity) offer
a clear example of this scenario. Although these alleles
affect both males and females, the effect on females is
more profound (Sina et al. 1999). Alternatively, it is
possible that the 4p15-p14 gene affects both sexes
equally but that there is an elevated sporadic rate of
high BMI values in males. For example, the environment
could have a larger impact on high BMI values in males
than it does in females, or there might be male-specific
obesity genes that effect some of the male members of
the pedigrees that we studied. In either case, including
males in our analysis would significantly reduce the link-
age scores. In fact, there are myriad possible scenarios
that are consistent with the observed results, and there-
fore the final assessment of the role that this gene plays
in male obesity awaits the discovery of the disease-caus-
ing variation.

The human draft genomic sequence around D4S3350
contains no obvious obesity-related candidate genes in
the region (International Human Genome Sequencing
Consortium 2001; Venter et al. 2001). Of the genes that
previously have been implicated in obesity, CCKAR
(cholecystokinin A receptor) (Ulrich et al. 1993; Miller
et al. 19935; Inoue et al. 1997; Funakoshi et al. 2000)
is the one closest to this region. However, in light of
the position of this gene, we do not think that it will
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explain this linkage. CCKAR is located 1.5 ¢cM up-
stream of the first marker listed in table 2, a location
that places it outside the 4-LOD-unit support interval
for this linkage. The region near D4S3350 appears to
be gene poor, which should aid in the subsequent iden-
tification of the disease gene and, ultimately, should pro-
vide significant information regarding the genetics of
predisposition to severe obesity.
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